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Abstract. The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the
expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under
favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic
matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however
shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of
a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a
consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which
account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase
and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase
transition to occur one will therefore require large fluctuations in the critical thermal parameters, which
might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario
proposed earlier, leading to a possible strangeness separation process during hadronization.

1 Introduction

The present day ultra-relativistic heavy-ion collision ex-
periments at BNL and CERN offer us an opportunity to
investigate the expected deconfinement phase transition
from the hadronic matter to another phase of free or only
weakly (perturbatively) interacting deconfined quarks and
gluons called quark gluon plasma (QGP). Several phe-
nomenological calculations indicate that this may hap-
pen at temperatures 150–200 MeV which probably can be
achieved in the present day experiments. Lattice QCD cal-
culations for baryon free matter indicate that a deconfin-
ing phase transition to an ideal non-interacting free QGP
can take place at temperatures > 250 MeV [1,2]. The pro-
duction of strange (antistrange) hyperons have been of
great interest because it has been shown by theoretical
models, during the last decade, that it may provide an
unambiguous signature of the deconfining hadron-quark
phase transition [3–6]. The formation of QGP is expected
to enhance the abundance of strangeness relative to that
obtained from the hadronic interactions at the similar en-
ergies. The present NA35 and WA85 CERN experimen-
tal data have indeed shown an enhancement of about
3–4 times in the strangeness production in the nucleus-
nucleus collisions when compared to the corresponding pp
collisions. However, these experimental observations have
been explained by assuming the existence of an equili-
brated hadronic resonance gas (HRG) at the freeze-out
[7–13]. In addition to this one may also require to assume
that the strange sector of the HRG may be only in a par-
tial chemical equilibrium [7–13]. These HRG models de-

scribe the hadronic matter in terms of a gas of hadronic
resonances with different masses where individual mass
states are populated according to the equilibrium Fermi-
Dirac or Bose-Einstein distributions. Furthermore, since
we are dealing with a system of strongly interacting par-
ticles, quantities such as baryon number and strangeness
are conserved. Since the total number of particles in the
system is not fixed due to creation, annihilation and other
reaction processes, thus this is achieved within the frame-
work of the grand canonical ensemble by introducing the
baryon and strange chemical potentials µB and µs, re-
spectively [4–13]. Similar arguments are also be applied
to the deconfined quarks and gluons in the QGP phase
where the quark chemical potential µq(= µB/3) and µs
control the net quark (or baryon) and strangeness con-
tents. In the framework of a statistical thermodynamical
model such as the one described above we can construct
a first order quark-hadron phase transition and obtain a
phase diagram curve (i.e., critical µc

B, T c) in the µB-T
plane for the co-existence of the HRG and QGP phases.
This is achieved by imposing the Gibbs criteria of simulta-
neous thermal, chemical and mechanical equilibrium i.e.,
TH = TQ, µH

B = 3µQ
q and PH = PQ where the indices

H and Q indicate the hadronic and the quark phases, re-
spectively and P the pressure. The study of a first or-
der phase transition between the QGP (with thermally
and chemically equilibrated u, d and s quark flavours
and gluons) and the HRG (where non-strange as well as
strange hadrons have achieved a reasonable degree of ther-
mal and chemical equilibrium) is of great importance. This
is mainly due to the fact that according to the Gibbs cri-
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teria not only µB but the µs also should match across the
phase boundary hence requiring that µH

s = µQ
s , in addition

to the above mentioned conditions. This will thus establish
a complete chemical equilibrium between the strange as
well as non-strange sectors of the two phases. In the decon-
fined phase of quarks and gluons i.e., the QGP, the strange
quark-antiquark pairs (ss̄) are created/annihilated freely
via the processes like gḡ ↔ ss̄, qq̄ ↔ ss̄ [3–6] where q(q̄)
and g(ḡ) stand for light u, d quarks (antiquarks) and glu-
ons (antigluons), respectively. In order to have zero net
strangeness in the QGP phase one must set µQ

s = 0 for
all values of µQ

q and T . The deconfinement property of
the quarks actually makes the µQ

s independent of µQ
q and

T . However, the problem arises for the HRG phase when
the criteria of strict strangeness conservation is applied.
It occurs since the quarks are confined into various kind
of hadronic resonances. One finds that the value of µH

s
becomes a sensitive function of µH

B and T and we do not
obtain µH

s = 0 always for all possible values of µH
B and T

except for µH
B = 0, which gives zero net strangeness in the

HRG phase [3–6]. However, quite interestingly it has been
pointed out [13] that for certain critical values of µH

B, T
(where µH

B = 0 is not necessarily required) it is possible to
achieve the total zero strangeness in the HRG phase while
the system still maintains µH

s = 0. One can therefore ob-
tain a strangeness conserving critical µH

B, T phase diagram
curve for the HRG phase by setting µH

s = 0. Such a crit-
ical curve was shown to lie close to the first order phase
diagram curve [13], with µH

s = µQ
s = 0. It should be noted

here that under this condition the net strangeness content
in the HRG phase may not be exactly zero for the critical
µc

B, T c values obtained by the construction of a first order
quark-hadron phase transition unless these critical values
happen to exactly coincide with those obtained from the
strangeness conservation criteria in the HRG phase with
µH

s = 0. Neverthless, the close proximity of the two crit-
ical curves leads to an optimistic conclusion that it may
be possible for the HRG phase (consisting of non-strange
hadrons as well as strange mesons and hyperons) to nego-
tiate a first order phase transition to a QGP phase (with
u, d and s quark flavours in thermochemical equilibrium)
with strictly conserved strangeness. The previous study
[13] was done in the context of the strange particle pro-
duction in relativistic nucleus-nucleus collisions employing
the HRG and QGP formalism. It was shown that the anal-
ysis of the heavy-ion CERN-SPS data gives the value of
µs ≈ 0 for the system, a condition which may not only
occur in the QGP phase but in the HRG phase as well. In
the analysis the hadrons were, however, regarded as point
particles. This assumption is quite unrealistic and in fact
leads to a very unphysical situation where one finds that
according to the Gibbs criteria there can also exist an-
other first order phase transition for larger values of µc

B
and T c where HRG phase becomes more stable than the
QGP phase and the system reverts back to the HRG phase
[14–19]. The effect becomes more prominent by the inclu-
sion of more hadronic resonances in the HRG phase. This
was shown to occur due to the ignorance of the effective
finite-size of the hadronic resonances which mainly arises

out of the well known property of the hadronic interac-
tions at high density and temperature viz., the short range
hard-core repulsion. This leads to the excluded volume ef-
fect and the equation of state (EOS) of the HRG phase is
significantly modified, thus completely avoiding the pos-
sibility of the unphysical phase transition to HRG phase
from the QGP phase in the region of large µB and T , and
the matter prefers to remain in the QGP phase. Here one
may also recall an alternative hadronization mechanism
suggested by Greiner et al. [20] for a baryon rich QGP,
leading to the formation of metastable blobs of strange-
quark matter, called strangelets. This mainly arises due
to unequal hadronization rates for the s and s̄ quarks in a
baryon rich QGP. According to this mechanism, since the
QGP contains light quarks (u, d) which are for more abun-
dant than the light antiquarks (ū, d̄) hence the emission
of Kaons (qs̄) from the QGP blob will occur at a much
faster rate than those of antikaons (q̄s). The possibility of
separating strange quarks from antistrange quarks in the
QGP ↔ HRG transition will therefore cause a continuous
enrichment of strange quarks in the QGP. Consequently
the strange quarks in the QGP phase will acquire a chem-
ical potential µQ

s different from 0. In the above picture
it should also be realized that a rapid depletion of anti-
strangeness from the QGP via K(qs̄) emission will also
cause a simultaneous rapid depletion of the baryon con-
tent of the QGP which will appear in the hadronic sec-
tor of the mixed phase. As a result µB and µs for the
hadronic as well as QGP phase will continuously change
with time during the evolution of the system via a mixed
phase and consequently the chemical equilibrium condi-
tions viz. µH

B = µQ
B and µH

s = µQ
s will not be satisfied

during the transition. Hence it is to be emphasized that
this would be totally inconsistent with the Gibbs equi-
librium conditions for a first order phase transition [20].
Therefore the proposed hadronization picture will be far
from a true first order quark-hadron phase transition pro-
cess. Furthermore, Greiner et al. [20] in their model have
though allowed for the strange chemical potential to evolve
“continuously” with time during the phase transition, the
baryon chemical potential is kept fixed, thereby resulting
in an internal inconsistency in the light of the above dis-
cussion. In the above picture the effect of the hyperon pro-
duction on the strangeness balance condition was ignored
during the earlier part of the hadronization process. How-
ever, this does not seem to be physically justifiable since it
is not clear why baryon rich QGP (i.e. with large baryon
number) should not produce large number of strange as
well as non-strange baryons continuously right from the
onset of the hadronization process. In fact if one allows for
a continuous hadronization of hyperons as well as Kaons,
then it may result in a nearly equal hadronization rate
for the s and s̄ quarks and the QGP might still maintain
µQ

s = 0 and a given value of the quark chemical potential
µQ

q during the transition, thus satisfying the Gibbs equi-
librium conditions. As discussed earlier it has been found
that for pointlike hadrons a strangeness conserving equi-
librium first order quark-hadron phase transition can oc-
cur with µH

s = µQ
s = 0. The motivation of this paper there-
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fore is that in view of all these facts it is of paramount im-
portance to investigate that whether an equilibrium first
order hadron-quark matter phase transition could still oc-
cur with strictly conserved strangeness by making use of
a more realistic EOS for the HRG phase which will take
into account the hard-core repulsive hadronic interactions
leading to a finite-size effect. In Sect. 2 we discuss the mod-
ified EOS of the HRG and its different cases. On the QGP
side we will employ an EOS which takes into account the
perturbative quark gluon interactions of order g2 and g3

[19,21]. It has been shown earlier [19] that for the µB, T
region where a first order quark-hadron phase transition
may occur, the contribution of these interactions plays an
important role in determining the location of the first or-
der phase diagram curve in the µB-T plane. In Sect. 3 we
present the EOS for the QGP phase. In Sect. 4 we will
discuss the results and in Sect. 5 we will summarise and
conclude.

2 The HRG phase

2.1 Pointlike hadrons with µH
s = 0

It has been shown earlier [4–13] that if the HRG phase is
regarded as a mixture of various non-interacting pointlike
hadronic resonances then in the framework of the grand
canonical ensemble theory one can derive the EOS of the
system. This is done by writing the total partition function
as a sum of the strange and non-strange sectors i.e.,

lnZ = lnZstrange + lnZnon−strange (1)

The abundance of strange (antistrange) hadrons can
be obtained from the lnZstrange only. The chemical po-
tentials of all hadrons are defined as [4–13]

µi = (qi − q̄i)µq + (si − s̄i)µs

= Nqµq + Nsµs

where Nq and Ns are the number of valence light (u, d) and
strange (s) quarks, respectively in the ith type of hadronic
species. The µq = µH

B/3. This is sufficient to define the fu-
gacities of all hadronic species e.g. it gives the Kaon fugac-
ity λK = λqλ

−1
s , antiKaon fugacity as λ−1

q λs, non-strange
baryon fugacities λB = λqλqλq, singly strange hyperon
(Λ, Σ) fugacities as λΛ,Σ = λqλqλs etc. The number den-
sity of a pointlike hadronic species in the system can be
obtained (by using Boltzman approximation for simplic-
ity) as [4–6,12]

ni =
gi

2π2 T 3λiW (mi/T ) (2)

where mi and gi are the mass and the spin-isopin degen-
eracy factor of the ith type of hadronic species. The T is
the thermal temperature of the system and W (mi/T ) =
(mi/T )2K2(mi/T ) with K2 as the modified Bessel func-
tion. If we include in our system the singly strange mesons,
hyperons and the doubly strange Ξ resonances we can

write the strangeness balance condition for the HRG phase
as ∑

K

gKWK

(
λ−1

q λs − λqλ
−1
s

)
+

∑
Y

gY WY

(
λ2

qλs − λ−2
q λ−1

s
)

+
∑
Ξ

gΞWΞ

(
λqλ

2
s − λ−1

q λ−2
s

)
= 0 (3)

Here K, Y and Ξ stand for Kaons, singly strange hyperons
and cascade resonances. One can immediately check that
for the baryon free matter with µB = 0 (i.e., λq = 1)
we obtain λs = 1 or µs = 0. However, it is also possible
to find, as discussed earlier, a set of solutions for µq in a
certain range of T for which µs = 0 always [13]. Setting
λs = 1 and solving for µq we get

µq = T cosh−1
{∑

gKWK − ∑
gΞWΞ

2
∑

gY WY

}
(4)

Using (4) we can obtain a critical µq, T curve for µs =
0 with strictly conserved strangeness in the HRG phase
consisting of pointlike hadronic resonances.

2.2 Finite size hadrons with µH
s = 0

As discussed in Sect. 1 we now incorporate the effect of the
short-range hard-core repulsive interaction among
hadrons. To achieve this in a phenomonological model
the hadrons are regarded as hard incompressible but de-
formable bags which cannot penetrate each other thus giv-
ing rise to an excluded volume effect [14–19]. This leads
to an EOS where thermodynamic quantities are modified
by a multiplicative factor. For example, the number den-
sity of ith type of “finite-size” hadronic species becomes
[14–19]

ni = no
i

(
1 +

∑
no

jvj

)−1
(5)

where no
j(n

o
i ) is the number density of the jth (ith) “point-

like” hadron given by (2) and vj the hard-core volume of
the corresponding finite-size hadron. The summation in
(5) runs over all the hadronic species in the system with
hard-core repulsion existing among them. The above cor-
rection factor is also applied to the pressure function e.g.
the partial pressure due to the ith type of hadronic species
is given as

Pi = P o
i

(
1 +

∑
no

jvj

)−1
(6)

If the summation in the correction factor in (5) is as-
sumed to include all the mesonic as well as baryonic (an-
tibaryonic) degrees of freedom including the strange (an-
tistrange) ones then the correction factor in the number
density will become same for all types of hadronic species
and hence the condition of strangeness balance in the HRG
phase with µH

s = 0 will again yield the same result for
µq as obtained for the case of pointlike hadrons given by
(4). However, this assumption is not very convincing for
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certain reasons, because it is believed that the hard-core
repulsion exists only between a pair of baryons (or an-
tibaryons) while it is of attractive nature for a baryon-
antibaryon, meson-baryon and meson-meson pairs [18,19].
Thus one should apply separate corrections to the baryon
and antibaryon sectors while the mesons are assumed to be
free from such hard-core repulsion and thus their contri-
bution either to the strangeness content or pressure of the
system should not apparently require any modification.
It may be noted here that this modified EOS is actually
thermodynamically inconsistent. However, it does not lead
to any appreciable error in the calculation of the number
densities [7,22] and besides its application is quite sim-
ple. This kind of EOS will thus serve our purpose which
is to illustrate the effect of the inclusion of the finite-size
of hadrons on the first order quark-hadron phase transi-
tion with µH

s = 0 and conserved strangeness. In the above
picture however one may further require to distinguish be-
tween two different physical situations, case 1: when the
thermal mesons are allowed to move over the entire region
including those occupied by the baryons (antibaryons) and
case 2: when they can move freely only in the available
volume i.e., in the region not occupied by baryons (an-
tibaryons). In the case 1 the contribution of Kaons to the
net strangeness content is not affected by the finite-size of
baryons (antibaryons) while in case 2 it is modified (re-
duced) by the fraction of the occupied volume or in other
words their contribution is proportional to the fraction of
the available volume, although they do not exhibit any
hard-core repulsion. Recently it was found that in order
to explain the CERN data in the framework of a recently
proposed thermodynamically consistent EOS for the HRG
phase it is necessary to assume that the thermal mesons
can exist only in the region not occupied by the baryons
(antibaryons) [9–11,23]. In the present analysis also, as we
shall discuss later, only the second scenario (i.e. the case
2) leads to a favourable physical situation. It is found that
there does not exist at all any physical phase diagram for
the case 1 if we set µH

s = 0 and demand strangeness con-
servation while for case 2 it is possible to find a physical
solution for µH

B and T , which we can obtain numerically
only. It should be stressed here again that in the case 2
the non-availability of the regions occupied by the baryons
(antibaryons) to the “thermal” mesons in the fireball is
“not” due to any hard-core repulsion between mesons and
baryons (antibaryons). It is the out come of the possibility
that if the mesons happen to penetrate into these regions
then they can be easily absorbed leading to various pos-
sible reaction processes, and therefore these mesons will
not remain in a “pure thermal state” or simply speaking
in a state where their thermal momentum spectra can be
described by the Bose-Einstein distribution functions. On
the other hand if they come close to these regions but do
not penetrate then due to the long range part of the strong
force they will be only scattered and hence will continue
to remain in a thermal state.

3 The QGP phase

In the deconfined phase of quarks and gluons the strange-
ness can be conserved by setting µQ

s = 0. This is a suffi-
cient condition. Under this condition the number density
of strange and antistrange quarks will become equal. It is
also necessary to incorporate the effect of interactions in
the deconfined quark gluon phase, since the lattice QCD
[1,13,24] and some phenomenological results [25] employ-
ing mean field theory chiral calculations in dense nuclear
matter, indicate that unless the temperature in the QGP
phase is very high ∼ 250 MeV ≈ 2 Tc (where Tc is the criti-
cal temperature for deconfinement at zero baryon chemical
potential) the quarks and gluons will continue to interact
at least perturbatively. In a recent work of Le Bellac and
Braaten and Pisarski [26,27] some of these aspects have
been discussed. Boyanovski et al. [28] have also consid-
ered an approach to the dynamics of relaxation and ki-
netics of thermalization in a scalar field theory incorporat-
ing the contributions of hard thermal loops. They employ
the non-equilibrium quantum field theory to study the re-
laxation, in the quark and the hadron phases. However,
in order to construct a proper first order quark-hadron
phase transition we will require to write the QGP pressure
function by taking into account the perturbative interac-
tions. We assume that both the HRG and QGP phases
have reached a reasonable degree of thermal and chemical
equilibrium. For determining the total partition function
(or pressure) due to various quark flavours and gluons in
the QGP phase, it is convenient to employ an EOS for the
QGP phase suggested by Kapusta [21]. This incorporates
the g2 and g3 contribution in the strong interaction cou-
pling, which was obtained by the application of the finite
temperature field theory (FTFT). This provides us a more
realistic EOS for the QGP phase [19] since at the phase
boundary the perturbative interactions among the quarks
and gluons contribute significantly to the QGP pressure.
Although, the lattice QCD numerical results indicate that
at and above the phase boundary, for deconfinement phase
transition, the quarks and gluons may still interact some-
what non-perturbatively. Nevertheless we for the sake of
simple phenomenological approach assume (and as will be
seen later) that the critical phase boundary obtained by
considering perturbative interactions in the EOS of the
QGP upto order g3 and the above discussed EOS for the
HRG will lead to a situation which is not very far from
what is indicated by some early lattice QCD numerical
simulation results [1,13,24,26]. We write the total parti-
tion function as [21]

T lnZ

V
=

2Nc

3

∑
f

∫
d3pp2

(2π)3
np

Ep

−1
3
παsNgT

2
∑

f

∫
d3p

(2π)3
np

Ep

−παsNg

∑
f

∫
d3p

(2π)3
d3q

(2π)3
1

Ep · Eq[
2m2

(Ep − Eq)2 − ω2 + 1
]

np · nq
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+
α

3/2
s NgT

3π2
√

2π

[
2
3
π2NcT

2

+
∑

f

∫
dp(p2 + E2

p) · np

Ep

]3/2

+
Ngπ

2T 4

45
− 1

36
αsπNcNgT

4 − B (7)

In the above expression

np = n+
p + n−

p ; nq = n+
q + n−

q ; ω = |p − q|

where n+
p (n+

q ) and n−
p (n−

q ) represent fermion and an-
tifermion distribution functions, respectively. The Nc and
Ng are the number of quark and gluon colours, respec-
tively. The summation over f is for the various quark
flavours which we take as u, d and s. The quantity αs =
g2/4π represents the running coupling constant in FTFT
[21] and is given as

αs =
4π

(11 − 2
3Nf) ln(M2/Λ2)

(8)

where Λ is the QCD scale fixing parameter and Nf the
total number of quark flavours. We use Λ = 160 MeV [19].
The quantity M for a thermalized QGP phase is given as
[19,21]

M2 = (4/3)

[
Nc

∑
f

∫
dp p4np + Ng

∫
dp p4Np

][
Nc

∑
f

∫
dp p2np + Ng

∫
dp p2Np

] (9)

Here Np is the gluon distribution function. Hence in the
present analysis the running coupling constant αs is func-
tion of µq and T , which was not the case in the earlier
analysis [13] where it was chosen to be a constant, for
determining the quark-hadron phase boundary. In the fol-
lowing we discuss the results of calculations. In (7) B is
the bag constant. Here it is assumed that the entire QGP
matter exists inside a big bag. This according to the Bag
Model is required, in order to take into account the con-
finement property of the quarks and gluons. Hence B es-
sentially accounts for the non-perturbative feature of the
QCD interaction.

4 Results and discussion

As described earlier in Sect. 2 we will clearly distinguish
between two possible physical situations for the applica-
tion of the EOS of the HRG phase consisting of finite-
size hadrons viz., case 1, when thermal mesons (includ-
ing Kaons) are allowed to move over the entire region of
space and their abundance is not affected by the presence
of finite-size baryons and antibaryons which occupy a cer-
tain fraction of the total volume of the system and case
2, where they can exist freely (i.e. in thermal state) only
in the available volume and hence their abundance is af-
fected (reduced) by the fraction of the volume occupied
by the baryons and antibaryons. The case 2 may lead us

Fig. 1. Strange and antistrange contents of the HRG indicated
by S and S̄, respectively, with hadrons up to 1410MeV mass.
Here all mesons including Kaons are assumed to be free of hard-
core repulsive interactions which is applied to (anti)baryons.
Furthermore the Kaons are allowed to penetrate through the
entire volume including that occupied by the (anti)baryons

to a more realistic situation as we have already discussed
in Sect. 2 and as we shall find later in the present analy-
sis. Before proceeding further it is also necesary to define
the set of our input particles {i : gi, mi) which reflect the
hadron mass spectrum considered in the analysis and thus
describe the actual composition of the HRG system. The
hadrons with masses up to 1410 MeV are incorporated in
the system. This contains singly and doubly strange parti-
cles besides other nonstrange hadrons. The omission of the
further heavier resonance states is done mainly due to the
fact that the process of their chemical equilibration will
be extremely slow and thus long enough to even partially
fill the phase space during the lifetime of the hot fire-
ball formed in the present day ultra-relativistic nucleus-
nucleus collisions [4,9,10]. Hence their abundance can be
safely ignored compared to the lighter hadrons formed at
the temperatures ∼ 150 MeV or so. The mass suppres-
sion effect can also be approximately estimated by the
Boltzmann factor e−m/T , where T is the temperature of
the system. For cascade this factor is quite small ∼ 10−4

while for omega it is an order of magnitude further smaller
∼ 10−5. For the case 1 it is found that if we set µH

s = 0
in the HRG phase then it is not at all possible to find any
real physical solutions for µH

B and T which will strictly
conserve the strangeness. This is well illustrated in Fig. 1
where the two curves corresponding to strange (S) and
antistrange (S̄) content of the system are separately plot-
ted with T for a fixed value of µH

B = 300 MeV. We see
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that the two curves do not intersect, thereby implying
that S − S̄ 6= 0 anywhere. We therefore find that case 1
may not be of our interest here. It, however, does imply
one thing that if the meson’s abundance is not affected by
the presence of baryons and antibaryons then the system
cannot have µH

s = 0 except for a special case when µH
B = 0

(i.e., baryon symmetric matter) and hence no other critical
set for µH

B and T exist except for (µH
B = 0, T ), as pointed

in Sect. 1. In physical terms this essentially happens be-
cause while on one hand the strange hyperons (antihy-
perons), have their abundances affected by the finite size
of all the baryons (antibaryons), the Kaon’s abundance
is not modified and the distribution of the strangeness
contents in various mesonic and baryonic degrees of free-
dom of the system becomes such that it is impossible to
achieve the condition of zero net strange with µH

s = 0 and
µH

B 6= 0, which corresponds to baryon asymmetric HRG
phase. Hence the values of µH

s 6= 0 are required which
are not of our interest here since we are dealing with the
possibility of a first-order quark-hadron phase transition
where µH

s = µQ
s = 0 is required along with strictly con-

served strangeness. The case 2, however, indeed turns out
to be a favourable one. It is found that it is possible to ob-
tain physically acceptable solutions of µH

B and T for such
a situation (viz. µH

s = 0). This actually arises out of a
different physical situation where Kaon’s contribution is
affected by the presence of the other baryonic resonances.
In Fig. 2 the dashed-crossed curve shows the critical curve
for such a case. Moreover, though unphysical but in the
same figure, also plotted are the results of calculations
for pointlike hadrons (4) for the sake of comparison with
the case of finite-size baryons. Here we consider two situa-
tions. The solid curve corresponds to a simple case of a few
ground state pointlike resonances in the strange sector of
the HRG phase viz, Λ, Σ, Ξ and K while the dashed curve
shows the results when pointlike hadrons up to 1410 MeV
mass are incorporated in the system. It is very interesting
to note that the curves for the above two pointlike cases
are almost completely overlapping in the entire µB and
T region. It therefore probably suggests us that the be-
haviour of the system with regard to the critical values of
µH

B and T for µH
s = 0 and zero net strangeness is not sig-

nificantly affected by the number of hadronic resonances
in the HRG phase. Furthermore, equally interesting is the
observation that the consideration of the finite-size (anti)
baryon resonances (case 2) also does not alter the critical
behaviour of the system significantly, with regard to the
strangeness conservation constraints in the HRG phase,
and the dashed-crossed curve for the case 2 is seen to be
almost completely overlapped by the two pointlike hadron
cases discussed above. This, however, does not mean that
the consideration of finite-size effect is not important in
the context of the present analysis since it greatly affects
the phase diagram curve obtained by constructing a first
order quark-hadron phase transition. Here it is also very
important to note that in this analysis the hard-core vol-
umes of baryons (antibaryons) and the bag constant B
used in the QGP phase EOS (7) are closely related from
the bag model considerations [9–11,19,23], where the en-

Fig. 2. Critical (µc
B, T c) curves for various cases. The solid

and dashed curves are for the case of strangeness conserva-
tion in the HRG phase with µH

s = 0 and pointlike ground
state Λ, Σ, Ξ and K only (solid) and hadrons up to 1410MeV
mass (dashed). The dashed-crossed curve is again for the case
of zero net strangeness in the HRG phase with µH

s = 0 but
with finite-size (anti) baryons (rN = 0.8 fm) up to 1410MeV
mass while the thermal mesons are allowed to exist only in the
volume not occupied by the (anti) baryons (i.e., case 2). The
dashed-open dircle, dashed-box and dashed-filled circle curves
represent the first order quark-hadron phase transition bound-
ary with µH

s = µQ
s = 0 for the three values of rN = 0.8, 0.6 and

0.5 fm, respectively and with hadrons up to 1410MeV

ergy density inside a hadron is given by 4B. By select-
ing a suitable value, say, for the nucleon hard-core radius
(rN), we can fix the bag constant by using 4B = MN/vN,
where MN is the nucleon mass which gives the total en-
ergy of the hadron bag and the nucleon hard-core (bag)
volume vN = (4/3)πr3

N. This in turn will also simultane-
ously fix the hard-core volumes (vjs in (5)) of the other
heavier baryonic (antibaryonic) resonances (mass mj) by
using vj = mj/4B. In this way we have thus reduced
a large number of arbitrary parameters to just one (i.e.
rN) in the theory. In Fig. 2 three first order quark-hadron
phase diagram curves (for µH

s = 0) are shown for the three
choices of rN viz., 0.8 fm (represented by dashed-open cir-
cle curve), 0.6 fm (represented by dashed-box curve) and
0.5 fm (represented by dashed-filled circle curve). We re-
gard the larger value of 0.8 fm as the possible upper bound
and the smaller value of 0.5 fm as the lowest bound for rN.
The three curves are seen to be well separated. The corre-
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sponding values of B for these cases come out to be 110,
260 and 450 MeV/fm3. Thus we find that smaller the value
of rN larger is the bag constant. This has two fold effect
on the critical µB and T values for the first order phase di-
agram curve. Firstly, that with smaller rN the pressure in
the HRG phase tends to become larger at any given value
of µH

B and T (cf. (6)) and secondly the corresponding larger
value of B will tend to stronger confinement effects in the
QGP phase thereby decreasing the net pressure of the sys-
tem for the same given values of µB and T . As a result
the first order quark-hadron phase trantition for smaller
values of rN requires larger critical values of µB and T to
occur. This is well exhibited in Fig. 2 by the shifting of the
phase diagram curves towards larger values of µB and T as
rN is made smaller. Here we also notice that by and large
all the three curves are quite far away from the region
where the cirtical curves for the HRG phase with µH

s = 0
and zero net strangeness lie, except for a narrow range of
µB and T where the quark-hadron phase diagram curve
for rN = 0.5 fm is seen touching this region. Hence (except
this) at these phase boundaries the HRG system will not
maintain the condition of strangeness neutrality. Here it
is worthwhile to note that if we accept 0.5 fm as the lower
acceptable bound for rN it results in a very large value of
B (= 450 MeV/fm3) and it will yield energy density inside
a hadron = 4B = 1.8 GeV/fm3. This is an extremely large
value. We therefore tend to accept this falue of rN with
caution. The other choices of rN seem reasonable in par-
ticular 0.8 fm [9–11] The dashed-crossed critical curve for
the HRG phase with µH

s = 0 and zero net strangeness is
for rN = 0.8 fm. As is obvious from the comparison (with
the pointlike cases i.e., rN = 0 it will almost completely
overlap with the critical curves (not shown in the figure)
obtained by setting rN = 0.6 and 0.5 fm, as done for ob-
taining the quark-hadron phase diagram curves.

Though earlier some other methods were used to de-
termine the baryon radii viz. using the Regge trajectories
[29,30], but given the great simplicity of doing this we
have chosen to invoke the bag model which has also suc-
cessfully been used to describe the hadron mass spectrum.
It is also necessary to invoke the existence of a bag in order
to construct a reasonable quark-hadron phase transition
[4,12,19,26]. Moreover, in the Regge approach the possi-
bility of the elementary particles (i.e. quarks and gluon)
was eliminated and all the baryons (and mesons as well)
with the same spin have almost the same radius, even if
their masses are greatly different and/or they carry the
strange quark e.g. for spin 1/2 baryons ≈ 0.7 fm [29,30].
Our main aim here is to determine that what is the ex-
tent of the role played by the geometrical effects viz. the
hard-core repulsions leading to finite-size and the excluded
volume effects. The way of the determination of the exact
radii for various cases of baryon-baryon pair hard-core in-
teraction is therefore not of great concern here. Further,
in order to test the sensitivity of the results and conclu-
sions we have chosen several values of the nucleon (and
consequently those of the other baryons) radii and found
that the conclusions are quite valid over the entire range
of these values for rN ≥ 0.5 fm.

It is to be noted that for a baryon free matter (µB = 0)
the value of Tc obtained for the first order quark-hadron
phase transition (with rN having a value around 0.6 fm)
is ≈ 120 MeV which is in a reasonably good agreement
with the earlier lattice QCD results [1,13,24,26]. It there-
fore seems to provide some support to the kind of EOS’s
employed in the present study, as hinted in Sect. 3. How-
ever, the columbia group [31] QCD numerical simulation
results for staggered quarks at Nt = 4 with 163 lattices
indicate that for two (NF = 2) massless flavours (u, d) the
transition seems to be of second order and above certain
light quark mass no transition occurs. For three (NF = 3)
degenerate flavours (u, d, s) the transition is of first or-
der while above certain light and strange quark masses
(mu = md = 12 MeV, ms = 50 MeV) again no transition
is observed. Thus for NF = 2 + 1 with nearly massless
u, d quarks there is a strange quark mass above which
no transition occurs while below this a first order phase
transition is seen. Some earlier results of Ukawa [32] and
Fukugita [33] have also shown that no transition occurs
for moderately massive quarks. Moreover, in contrast to
this Iwasaki et al. [34] using Wilson quarks have recently
tried to show that for NF = 2+1 a first order QCD phase
transition occurs even for ms = 400 MeV on a 123 × 4
lattice.

However, the cited work of Iwasaki et al. has got cer-
tain flaws and can not be taken seriously. Iwasaki et al.
took the divergence of their numerical algorithm above
certain temperature as signaling a physical phase transi-
tion. This however is a bad criterion, because that would
mean they were not able to have physically acceptable re-
sults for temperature above certain point. This divergence
therefore can not be taken as an indication of a physical
phase transition. On the other hand the earlier works by
Columbia group have all the calculation converging at ev-
ery temperature they have investigated. In summary the
reliable lattice numerical results indicate an absence of a
first-order phase transition in the real world when the s
quark is moderately heavy (> 50 MeV).

In view of the above a descrepancy arises since there
are many phenomenological model calculations (employ-
ing various types of EOS’s) which do indicate the exis-
tence of a first order quark-hadron phase transition for
ms = 150 MeV. This descrepancy seems to arise because
of different approaches. For example in the phenomeno-
logical model calculations we require to write down the
explicit EOS’s for the HRG as well as the QGP phase
separately. On the other hand the lattice simulation of
the QCD does not provide a tractable EOS for the HRG
phase. Hence the descriptions of the hadronic phase are
different in the phenomenological and the lattice QCD ap-
proaches. Further, the phenomenological approach (unlike
the lattice QCD approach) invokes the Gibbs criteria of
the co-existence of the two phases for the construction
of a phase transition while simultaneously conserving the
net strangeness. These inherent differences in the two ap-
proaches seem to give rise to very different expectations
with regard to the existence of a phase transition when
the s quark mass is > 50 MeV. Therefore the results ob-
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tained in the present calculation are to be viewed in the
background of the phenomenological approach.

The above results thus indicate that under the phys-
ically acceptable conditions the first order quark-hadron
phase diagram curve, with µH

s = µQ
s = 0, is not expected

to overlap with the critical curve for the HRG phase with
µH

s = 0 and zero net strangeness. It therefore does not
seem physically possible for a thermo-chemically equili-
brated hadronic resonance matter to negotiate a first order
equilibrium phase transition to another thermochemically
equilibrated QGP phase with strictly conserved strange-
ness.

The present study clearly indicates that the strange-
ness conservation constraints are crucial and may actu-
ally hinder the possibility of an equilibrium quark-hadron
phase transition as expected in the ultra-relativistic heavy-
ion collision or during the early universe, if one considers
a more realistic set of EOS for the HRG and the QGP
phases. However, in the presence of some non-equilibrium
effects e.g. partial thermochemical equilibrium [7–12] of
various hadron resonances species, early loss or leakage/
evaporation of strangeness (antistrangeness) content of
the system, before the occurrence of the actual first or-
der equilibrium phase transition, and more importantly
due to a superheating in the HRG and supercooling ef-
fect in the QGP phase, there may still occur a QGP ↔
HRG phase transition. In other words under such physical
situations the matter may negotiate a nearly (or weak)
first order phase transition with conserved strangeness.
Here the early loss of strangeness (antistrangeness) con-
tent prior to the formation of a thermally and chemically
equilibrated QGP fireball is not to be misunderstood with
the scenario proposed by Greiner et al. [20]. Here we only
permit a nonzero value of the net strangeness content i.e.
(S − S̄ 6= 0) giving rise to a non-zero value of µQ

s which
“remains constant” during the later part of the evolution
of the QGP fireball and also while the system is nego-
tiating an equilibrium first order phase transition. Under
these special conditions the system may cross the region of
large separation, seen in Fig. 2, between the phase diagram
curves and the strangeness conserving critical curves.

5 Summary and conclusion

In summary we have investigated the possibility of a strict
first order deconfinement phase transition from an equili-
brated hadronic resonance gas to another phase of equi-
librated, perturbatively interacting plasma of quarks and
gluons with strictly conserved strangeness. We have con-
sidered a more realistic physical situation where the phe-
nomenological EOS of the hadronic resonance matter in-
corporates an important feature of hadronic interactions
at high density and/or temperature viz., hard-core repul-
sive interaction leading to a finite-size effect. We further
assume the hard-core repulsion to exist between a pair of
baryons or antibaryons while mesons are free from such
repulsive interaction. In the QGP phase we have consid-
ered perturbative interactions upto the order g2 and g3

in the strong coupling. We construct a first order quark-
hadron phase transition by employing the Gibbs criteria
and determine the critical values of µB and T . Simulta-
neously we also determine a set of critical values of µH

B
and T for the hadronic phase by demanding the conser-
vation of strangeness and setting µH

s = 0 (as required by
the Gibb’s criteria). It is found that real physical solu-
tions can exist only under a plausible assumption that the
region of space occupied by the baryons and antibaryons
is not available to the “thermal mesons”. We find that
the two phase diagram curves in the µB-T plane are far
apart for physically acceptable values of the baryon hard-
core radii and the bag constant B which are related from
the bag model considerations (due to which the number
of arbitrary parameters in the model is also reduced to
only one i.e., the nucleon hard-core radius rN). The above
results contradict the previous results for ideal pointlike
hardons where the two phase diagram curves were found
to lie close to each other in the µB-T plane, hence indicat-
ing the possibility of QGP formation in the CERN exper-
iment. Though providing interesting results we, however,
regard the case of pointlike hadrons as unphysical since
in this case there exists no reasonable phase transition to
the QGP phase at high temperatures or baryon density
(or chemical potential) due to the possible excitation of
a vast number of hadronic resonances. Our aim has been
to study that upto what extent the strangeness conserva-
tion constraints and the finite baryon (antibaryon) sizes
may play an important role in the first order equilibrium
quark-hadron phase transition. The present more realistic
and phenomenological approach leads to the conclusion
that it is quite less likely for a strongly interacting matter
consisting of strange as well as non-strange hadronic res-
onances to negotiate a first order equilibrium phase tran-
sition to another phase of deconfined quarks and gluons
with conserved strangeness, except for some special phys-
ical situations where nonequilibrium effects may become
important.
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